REDUCTION OF THE PROBLEM OF MOTION OF A HEAVY RIGID BODY WITH ONE FIXED POINT TO A SINGIE EQUATION. NEW PARTICULAR SOLUTION
 OF THE ABOVE PROBLEM
 (sveprenie zadachi O dVizaionil tiathielogo tverdoco tein, novor chastnor rbshrsie myoi zadhchi)

PMM Vol.30, № 4, 1966, pp.784-788
E.I. KHARLAMOVA
(Donetsk)
(Received October 13, 1965)

Up to the present time, thirteen particular solutions of this problem were reported by various authors. These solutions can be devided into two groups. First group will contain the solutions found under the condition that the center of gravity lies on the principal axis of the ellipsoid of gyration. We find there solutions by Zhukovskii [1] (*), Lagrange, Kowalewski [3], Chaplygin [4], three solutions utilizing polynomial integrals [5] and the solution of Sretenskil [6] generalizing the Goriachev-Chaplygin case of integrability [7]. In the remaining five solutions, conditions defining the position of the center of gravity are less restrictive. It can be arbitrary when the rotation of the body is uniform (solution with three linear integrals [8]). In the solution with two linear integrals [9] and in three solutions with one linear integral [10 to 12], the center of gravity lies on the principal plane. Last five equations have a common feature. In each of them a linear integral occurs.

The solution presented in this paper is outside the rirst group since the center of gravity lies on the principal plane (not on the principal axis). Integrals in it are however, unlike in the second group, nonlinear.

The problem of motion of a heavy rigid body with one fixed point, is reduced to a system of two differential equations of first order [13]. Th1s system is equivalent to one differential equation of second order, which is, in general, very complex. If however one of the special coordinate axes coincides with the principal axis, then the problem can be reduced to one, relatively simple equation. This method is utilized to obtain another particular solution to our problem.

1. Let $\lambda_{,} \lambda_{1}$ and λ_{2} be a gyrostatic moment constant with respect to the body and $x+\lambda, y+\lambda_{1}$ and $z+\lambda_{2}$ be the angular moment of the

[^0]system relative to the fixed point. Let further γ, γ_{1} and γ_{2} be an invariant vector in the direction of the force of gravity, the modulus Γ of which is equal to the product of the mass of the system anu the distance of the center of gravity from the fixed point. Denoting the components of the gyration tensor in the special ccordinate system by a, a_{1}, a_{2}, b_{1} and b_{2}, we can write the equations of motion in the form [13]
\[

$$
\begin{gather*}
d x / d t=\left(a_{2} z+b_{2} x\right)\left(y+\lambda_{1}\right)-\left(a_{1} y+b_{1} x\right)\left(z+\lambda_{2}\right) \tag{1.1}\\
d y / d t=\left(a x+b_{1} y+b_{2} z\right)\left(z+\lambda_{2}\right)-\left(a_{2} z+b_{2} x\right)(x+\lambda)-\gamma_{2} \\
d \gamma / d t=\left(a_{2} z+b_{2} x\right) \Upsilon_{1}-\left(a_{1} y+b_{1} x\right) \gamma_{2} \tag{1.2}\\
d \gamma_{1} / d t=\left(a x+b_{1} y+b_{2} z\right) \gamma_{2}-\left(a_{2} z+b_{2} x\right) \gamma
\end{gather*}
$$
\]

Out of six equations, we have written above only four, which shall be used later. We shall replace the remaining two equations with the integrals

$$
\begin{gather*}
a x^{2}+a_{1} y^{2}+a_{2} z^{2}+2\left(b_{1} y+b_{2} z\right) x-2 \gamma=2 E \tag{1.3}\\
(x+\lambda) \gamma+\left(y+\lambda_{1}\right) \Upsilon_{1}+\left(z+\lambda_{2}\right) \Upsilon_{2}=k \tag{1.4}
\end{gather*}
$$

Let one of the special coordinate axes (e.g. the third one) coincide with the principal axis

$$
\begin{equation*}
b_{2}=0 \tag{1.5}
\end{equation*}
$$

and let the gyrostatic moment be orthogonal to this axis

$$
\begin{equation*}
\lambda_{2}=0 \tag{1.6}
\end{equation*}
$$

Conditions (1.5) and (1.6) represent exactly the restraints imposed on the parameters of the system, in presence of which the problem reduces to one, relatively simple equation.

From (1.1) (in the following the subscript of b_{1} will be omitted), we have

$$
\begin{equation*}
d y / d t=z\left[\left(a-a_{2}\right) x+b y-a_{2} \lambda\right]-\gamma_{2} \tag{1.7}
\end{equation*}
$$

$$
d x / d t=-z X(y, x), \quad X(y, x)=\left(a_{1}-a_{2}\right) y+b x-a_{2} \lambda_{1}
$$

elimination of t results in

$$
\begin{equation*}
\gamma_{2}=z \frac{d Y}{d x}, \quad Y(y(x), x)=\frac{a_{1}-a_{2}}{2} y^{2}+\left(b x-a_{2} \lambda_{1}\right) y+\frac{a-a_{2}}{2} x^{2}-a_{2} \lambda x+n \tag{1.8}
\end{equation*}
$$

where n_{*} is a constant. Substitution of (1.5) to (1.8) into (1.2) eliminates from the latter the variable z

$$
X \frac{d \gamma}{d x}+a_{2} \gamma_{1}=\left(a_{1} y+b x\right) \frac{d Y}{d x}, \quad X \frac{d \gamma_{1}}{d x}-a_{2} \gamma=-(b y+a x) \frac{d Y}{d x}
$$

and gives

$$
\begin{gather*}
\gamma+i \gamma_{1}=\left(\gamma^{\circ}+i \gamma_{1}\right) \exp i a_{2} \int_{x_{0}}^{x} \frac{d \sigma}{X(y(\sigma), \sigma)}+ \\
+\int_{x_{0}}^{x} F(y(\sigma), \sigma) \frac{d Y(y(\sigma), \sigma)}{d \sigma}\left(\exp i a_{2} \int_{\sigma}^{x} \frac{d \tau}{X(y(\tau), \tau)}\right) d \sigma \tag{1.9}
\end{gather*}
$$

where

$$
\begin{equation*}
F(y(x), x)=\frac{\left(a_{2}-i b\right) y(x)+(b-i a) x}{X(y(x), x)} \tag{1.10}
\end{equation*}
$$

Let us now eliminate z from the integrals (1.3) and (1.4)

$$
\begin{equation*}
a_{2} z^{2}=2 \gamma+2 E-a_{1} y^{2}-2 b x y-a x^{2}, \quad(x+\lambda) \gamma+\left(y+\lambda_{1}\right) \gamma_{1}+z^{2} \frac{d Y}{d x}=k \tag{1.11}
\end{equation*}
$$

to obtain

$$
\left\{2 \frac{d Y}{d x}+(x+\lambda) a_{2}\right\} \gamma+\left(y+\lambda_{1}\right) a_{2} \gamma=a_{2} k+\left(a_{1} y^{2}+2 b x y+a x^{2}-2 E\right) \frac{d^{i} Y}{d x}
$$

Real part of the product

$$
\left(\gamma+i \gamma_{1}\right)\left\{2 \frac{d Y}{d x}+(x+\lambda) a_{2}-i\left(y+\lambda_{1}\right) a_{2}\right\}
$$

is found on the left-hand side, hence utilizing (1.9), we obtain

$$
\begin{gather*}
\operatorname{Re}\left\{[2 \frac { d Y } { d x } + (x + \lambda) a _ { 2 } - i (y + \lambda _ { 1 }) a _ { 2 }] \left[\left(\gamma^{\circ}+i \gamma_{1}\right) \exp i a_{2} \int_{x_{0}}^{x} \frac{d \sigma}{X(y(\sigma), \sigma)}+\right.\right. \\
\left.+\int_{x_{0}}^{x} F(y(\sigma), \sigma) \frac{d Y(y(\sigma), \sigma)}{d \sigma}\left(\exp i a_{2} \int_{\sigma}^{x} \frac{d \tau}{X(y(\tau), \tau)}\right) d \sigma\right\}= \\
=a_{2} k+\left(a_{1} y^{2}+2 b x y+a x^{2}-2 E\right) \frac{d Y}{d x} \tag{1.12}
\end{gather*}
$$

Substituting into the latter x, Y and F from (1.7), (1.8) and (1.10), we obtain integro-differential equation defining the function $y=v(x)$. With the latter known, the relation between γ and γ_{1}, and x, can be found from (1.9) Next $z=z(x)$ is determined by (1.1i), afterwhich (1.8) gives us $\gamma_{2}=\gamma_{2}(x)$ and (1.7) produces the relationship between x and t after completing the quadrature.
2. Analogous results can be obtained by another method mentioned in the introduction. Two equations which under the conditions (1.5) and (1.6) have only even powers of z, are

$$
\begin{gather*}
\left(y+\lambda_{1}\right) X \frac{d z^{2}}{d x}-\left[(x+\lambda) a_{2}+2 \frac{d Y}{d x}\right] z^{2}=\Phi(y, x) \\
\left\{\frac{1}{2} X \frac{d z^{2}}{d x}+\left(a_{1} y+b x\right)(x+\lambda)-(a x+b y)\left(y+\lambda_{1}\right)\right\}^{2}+ \tag{2.1}\\
+\left(\frac{d Y}{d x}\right)^{2} z^{2}+\left\{\frac{1}{2}\left(a x^{2}+a_{1} y^{2}+a_{2} z^{2}\right)+b x y-E\right\}^{2}=\Gamma^{2}
\end{gather*}
$$

$\Phi(y, x)=2(a x+b y)\left(y+\lambda_{1}\right)^{2}+(x+\lambda)\left(a x^{2}-a_{1} y^{2}-2 a_{1} \lambda_{1} y-2 b \lambda_{1} x-2 E\right)-2 k$
First of them is linear in \boldsymbol{z}^{2}. Substituting

$$
\begin{gathered}
z^{2}=z_{0}{ }^{2} \exp \int_{x_{0}}^{x} \frac{(\sigma+\lambda) a_{2}+2 d Y(y(\sigma), \sigma) / d \sigma}{\left(y(\sigma)+\lambda_{1}\right) X(y(\sigma), \sigma)} d \sigma+ \\
+\int_{x_{0}}^{x} \frac{\Phi(y(\sigma), \sigma)}{\left(y(\sigma)+\lambda_{1}\right) \cdot X(y(\sigma), \sigma)}\left(\exp \int_{\sigma}^{x} \frac{(\tau+\lambda) a_{2}+2 d Y(y(\tau), \tau) / d \tau}{\left(y(\tau)+\lambda_{1}\right) X(y(\tau), \tau)} d \tau\right) d \sigma
\end{gathered}
$$

into (2.1), we obtain the equation connecting y and x, equivalent to (1.12). In the following however, (1.12) will be found more conveneient in use.
3. If $a_{2}=a_{1}$, Equation (1.12) can be radically simplified. This condition, together with (1.5), means that the first coordinate axis on which we have the center of gravity is perpendicular to the circular cross section of the gyratory ellipsoid [14].

We shall now introduce a new variable 5

$$
\begin{equation*}
x=\xi+x \lambda_{1} \quad\left(x=a_{1} / b\right) \tag{3.1}
\end{equation*}
$$

Relationships from Section 1, will now take the form

$$
\begin{equation*}
X=b \xi, y(Y(\xi), \xi)=\frac{Y(\xi)-n}{b \xi}-\frac{a-a_{1}}{2 b}\left(\xi+2 x \lambda_{1}\right)+x \lambda\left(n=n_{*}+\frac{a-a_{1}}{2} \chi^{2}-a_{1} \lambda \lambda_{1}\right) \tag{3.2}
\end{equation*}
$$

$$
\begin{gather*}
\gamma+i \gamma_{1}=\left(\gamma^{\circ}+i \gamma_{1}^{0}\right)\left(\frac{\xi}{\xi_{0}}\right)^{i x}+\int_{\xi_{0}}^{\sum_{0}} \frac{\left(a_{1}-i \omega\right) y(\gamma(\tau), \tau)+(b-i a)\left(\tau+x \lambda_{1}\right)}{b \tau}\left(\frac{\xi}{\tau}\right)^{i x} \frac{d Y}{i \tau} d \tau \\
a_{1} z^{2}=2 \gamma+2 E-a_{1} y^{2}-2\left(b \xi+a_{1} \lambda_{1}\right) y-a\left(\xi+x \lambda_{1}\right)^{2} \\
\gamma_{2}=z d Y / d \xi, \quad d \xi / d t=-b z \xi
\end{gather*}
$$

Dependence of \boldsymbol{Y} on ξ is found from Equation

$$
\begin{align*}
& \operatorname{Re}\left\{\left[2 \frac{d Y}{d \xi}+a_{1}\left(\xi+x \lambda_{1}+\lambda-i y(Y, \xi) \cdots i \lambda_{1}\right)\right]\left(\gamma^{\gamma}+i \gamma_{1}^{0}\right)\left(\frac{\xi}{\xi_{0}}\right)^{i x}+\right. \\
& \left.+\int_{\xi_{0}}^{\xi} \frac{\left(a_{1}-i b\right) y(Y(\tau), \tau) \cdots(b-i a)\left(\tau+x \hat{1}_{1}\right)}{b \tau}\left(\frac{\xi}{\tau}\right)^{i x} \frac{d Y}{d \tau} d \tau\right\}= \tag{3,5}\\
& \quad=a_{1} k+\left\{a_{1} y^{2}+2\left(b \xi+a_{1} \lambda_{1}\right) y+a\left(\xi+x \lambda_{1}\right)^{2}-2 E\right\} \frac{d Y}{d \xi}
\end{align*}
$$

4. Simplest particular solutions of (3.5) can be sought in the class of polynomials. Let us assume for example, that

$$
\begin{equation*}
Y(\xi)-n=c \xi^{2}+2 c_{1} \xi+c_{0} \tag{4.1}
\end{equation*}
$$

(constants $0, q_{2}$ and 00 which are to be determined, are assumed real). Then, from (3.2) we have

$$
\begin{equation*}
b y=\left(c-\frac{a-a_{1}}{2}\right) \xi+2 r_{1}+a_{1} \lambda-\left(a-a_{1}\right) x \lambda_{1}+\frac{c_{0}}{\xi} \tag{4.2}
\end{equation*}
$$

Putting (4.1) and (4.2) into (3.3) and choosing the constant $\gamma^{\circ}+i \gamma_{1}{ }^{\circ}$ so that the resulting expression does not contain ξ in the $i x$-th power, we obtain

$$
\begin{gather*}
\gamma=s_{0}+s_{1} \xi+s \xi^{2}, \quad \gamma_{1}=2 \frac{c_{0} c_{1}}{b \xi}+s_{0}^{\prime}+s_{1}^{\prime} \xi+s^{\prime} \xi^{2} \quad s_{0}=2\left\{\frac{c c_{0}+2 c_{1}^{2}}{a_{1}}+c_{1}\left(\lambda+x \lambda_{1}\right)\right\} \tag{4.3}\\
s_{1}=\frac{2}{\left(b^{2}+a_{1}^{2}\right) b}\left\{a_{1}\left[2 a_{1} b \lambda+\left(b^{2}+2 a_{1}^{2}-a a_{1}\right) \lambda_{1}\right] c+\left(6 a_{1} c+b^{2}+a_{1}{ }^{2}\right) b c_{1}\right\} \\
s=\frac{6 a_{1} c+4 b^{2}+3 a_{1}^{2}-a a_{1}}{4 b^{2}+a_{1}^{2}} c \\
s_{0}^{\prime}=\frac{2}{b}\left\{\left(c_{0}+2 c_{1}^{2}+\left(a_{1} \lambda+\frac{b^{2}-a a_{1}-a_{1}{ }^{2}}{b} \lambda_{1}\right) c_{1}\right\}\right. \tag{4,4}\\
s_{1}^{\prime}=\frac{2 a_{1}\left[\left(a_{1}^{2}-b^{2}\right) \lambda-\left(a-a_{1}\right) a_{3} k \lambda_{1}\right] c+\left[6\left(a_{1}^{2}-b^{2}\right) c-\left(a-a_{1}\right)\left(b^{2}+a_{1}^{2}\right)\right] c_{1}}{\left(b^{2}-1-a_{1}^{2}\right) b} \\
s^{\prime}=\frac{2\left(a_{1}^{2}-2 b^{2}\right) c-\left(a-a_{1}\right) a_{1}^{2}-2 a b^{2}}{\left(4 b^{2}+a_{1}^{2}\right) b} c
\end{gather*}
$$

Now (3.4) becomes

where

$$
\begin{gather*}
b^{2} z^{2}=-\frac{c_{0}^{2}}{\xi^{2}}+\frac{m_{1}}{\xi}+m_{2}+m_{3} \xi+m \xi^{2} \tag{4.5}\\
\gamma_{2}=\frac{2}{b}\left(c+\frac{c_{1}}{\xi}\right) \sqrt{-c_{0}^{2}+m_{1} \xi+m_{2} \xi^{2}+m_{3} \xi^{3}+m \xi^{4}} \tag{4.6}\\
t=-\int_{\xi_{0}}^{\xi} \frac{d \xi}{\sqrt{-c_{0}^{2}}+m_{1} \xi+m_{2} \xi^{2}+m_{3} \xi^{3}+m \xi^{4}} \tag{4.7}
\end{gather*}
$$

$$
\begin{align*}
& m_{1}=-2 c_{0}\left\{2 c_{1}+a_{1} \lambda-\left(a-a_{1}\right) x \lambda_{1}+b \lambda_{1}\right\} \\
& m_{2}=2 \frac{2 b^{2}-a_{1}^{2}}{a_{1}^{2}}\left(c c_{0}+2 c_{1}^{2}\right)-4 b \lambda_{1} c+4\left(\frac{b^{2}-a_{1}^{2}}{a_{1}} \lambda+\frac{b^{2}+a a_{1}-a_{1}^{2}}{b} \lambda_{1}\right) c_{1}+ \\
& +\left(a-a_{1}\right) c_{0}+\left(b^{2}-a a_{1}+a_{1}^{2}\right)\left[\left(a-a_{1}\right) x \lambda_{1}-2 \lambda a_{1}\right]-a_{1}^{2}\left(\lambda^{2}+\lambda_{1}^{2}\right)+2 \frac{b^{2}}{a_{1}} E \tag{4.8}
\end{align*}
$$

$$
\begin{gathered}
m_{3}=\frac{2 c}{\left(b^{2}+a_{1}{ }^{2}\right)}\left\{2\left(5 b^{2}-a_{1}^{2}\right) c_{1}+\left(3 b^{2}-a_{1}^{2}\right) a_{1} \lambda+\left[b^{3}+\left(2 a_{1}-a\right) a_{1} b+\left(a-a_{1}\right) a_{1}{ }^{2} 火\right] \lambda_{1}\right\}+ \\
+2\left(a-a_{1}\right) c_{1}-\left(2 b^{2}+a_{1}^{2}-a a_{1}\right) \lambda-\left[\left(3 a_{1}-a\right) b+\left(a-a_{1}\right)^{2} x\right] \lambda_{1} \\
m=2 \frac{6 c+2 a_{1}-a}{4 b^{2}-a_{1}^{2}} b^{2} c-c^{2}+\left(a-a_{1}\right) c-\frac{1}{4}\left(a-a_{1}\right)^{2}-b^{2}
\end{gathered}
$$

Relations (3.1), (4.2), (4.5), (4.3) and (4.6) give the basic variables $x, y, y, \gamma, \gamma_{1}$ and γ_{2} as functions of ξ, which, by (4.7), is an elliptic function of time.

We can complete the solution by showing conditions satisfied by the coefficients c, o_{1} and c_{2} of the polynomial (4.1). The latter shuuld convert (3.5) into an identity. Putting (4.1) into (3.5), let us utilize (4.2) and (4.3). Comparing the coefficients of like powers of 5 , we obtain six relations. Two of them vanish for any c, c_{1} and o_{0}, while the remaining four can, using the notation of (4.4) and (4.8), be written as

$$
\begin{gather*}
b^{2} s+\left(c-\frac{a-a_{1}}{2}\right) b s^{\prime}+2 m c=0 \\
2 m c_{1}+2 m_{3} c+b^{2} s_{1}+\left(a_{1} \lambda_{1}+b \lambda\right) b s+\left(c-\frac{a-a_{1}}{2}\right) b s^{\prime}+ \\
+\left[2 b c_{1}+a_{1} b \lambda-\left(a-a_{1}\right) a_{1} \lambda_{1}+b^{2} \lambda_{1}\right] s^{\prime}=0 \tag{4.9}\\
2 m_{3} c_{1}+2 m_{2} c+b^{2} s_{0}+\left(a_{1} \lambda_{1}+b \lambda\right) b s_{1}+\left(c-\frac{a-a_{1}}{2}\right) b s_{0}^{\prime}+ \\
+\left[2 b c_{1}+a_{1} b \lambda-\left(a-a_{1}\right) a_{1} \lambda_{1}+b^{2} \lambda_{1}\left[s_{1}^{\prime}+c_{0} b s^{\prime}=0\right.\right. \tag{4.10}\\
b k=\frac{2}{b}\left\{m_{2} c_{1}+m_{1} c+c_{0} c_{1}\left(c-\frac{a-a_{1}}{2}\right)\right\}+\left(a_{1} \lambda_{1}+b \lambda\right) s_{0}+ \\
+\left[2 c_{1}+a_{1} \lambda+b \lambda_{1}-\left(a-a_{1}\right) x \lambda_{1}\right] s_{0}^{\prime}+c_{0} s_{1}^{\prime} \tag{4.11}
\end{gather*}
$$

$$
\begin{aligned}
& \text { Putting (4.4) and (4.8) into (4.9) we find } c \text { and } o_{1} \\
& 6 c=2 R-a-a_{1} \\
& \qquad \begin{array}{c}
6\left(4 b^{2}+a_{1}^{2}\right) b c_{1}=\left\{\frac{b^{2}+a_{1}^{2}}{R}\left[6 b^{2}+\left(2 a_{1}-a\right) a_{1}\right]-\left(7 b^{2}+a_{1}^{2}\right) a_{1}\right\} b \lambda- \\
-\left\{\frac{b^{2}+a_{1}^{2}}{R}\left[\left(7 a_{1}-2 a\right) b^{2}+2 a_{1}\left(a_{1}^{2}-a a_{1}+a^{2}\right)\right]-2 b^{4}-2\left(3 a_{1}-a\right) a_{1} b^{2}-\left(a+a_{1}\right) a_{1}^{3}\right\} \lambda_{1} \\
R= \pm \sqrt{3 b^{2}+a_{1}^{2}-a a_{1}+a^{2}}
\end{array}
\end{aligned}
$$

Energy constant F is included in m_{2} and can be found from (4.10), while constant \hbar is given by (4.11).

Substitution of (4.3) and (4.6) into

$$
\gamma^{2}+\gamma_{1}^{2}+\gamma_{2}^{2}=\Gamma^{2}
$$

gives the equation connecting ∞ and r

$$
s_{0}^{2}+s_{0}^{2}+4 \frac{c_{0} c_{1}}{b} s_{1}^{\prime}+\frac{4}{b^{2}}\left(c_{1}^{2} m_{2}+2 c c_{1} m_{1}-c^{2} c_{0}^{2}\right)=\Gamma^{2}
$$

and the resulting solution has eight independent parameters

$$
a, a_{1}, b, \lambda, \lambda_{1}, \Gamma, \xi_{0}, a_{0}
$$

Parameter ${ }^{50}$ is found from (4.7), while a_{0} will appear during the determination of the position of the body in space, based on kinematic equations presented in Sections 1.5 and 1.6 of [13].

BIBLIOGRAPHY

1. Znukovskii, N.E., O dvizhenii tverdogo tela, imeiushchego polosti napolnennye kapel'noi zhidkost'iu (On the Motion of a Rigid Body with FluidFilled Cavities). Collected Works. Vol.3, M.-L., ONII, 1936,
2. Volterra, V., Sur la théorie des variations des latitudes. Acta Math. Vol.22, 1899.
3. Kowalewski, S.V., Zadacha o dvizhenil tverdogo tela okolo nepodvizhnot tochks. V Sb. "Dvizhenie tverdogo tela vokrug nepodvizhnoi tochki (Problem of the Motion of a Rigid Body Around a Fixed Point. In Collected Works, Vol.1, M.-L., Costekhizdat, 1950.
4. Chaplygin, S.A., Novoe chastnoe reshenie zadachi o vrashchenif tiazhelogo tverdogo tela vokrug nepodvizhnoi tochki. Chaplygin, S.A., Sobr.soch. (New Particular Solution of the Problem of Rotation of a Heavy Rigid Body About a Fixed Point. Collected Works, Vol.l), M.-L., Gostekhizdat, 1948.
5. Kharlamov, P.V., Polinomial'nye reshenila uravnenil dvizhenila tela, imeiushchego nepodvizhnuiu tochku (Polynomial solutions of the equations of motion of a body with a fixed point). PNK Vol.29, N $1,1965$.
6. Sretenski1, L.N., O nekotorykh sluchaiakh dvizhenila tiazhelogo tela s giroskopom (On some cases of motion of a heavy rigid body with a gyroscope). Vestn.mosk.gor.Univ., Ser.matem., mekhan, , 1963.
7. Chaplygin, S.A., Novy1 sluchai vrachchenila tiazhelogo tverdogo tela, podpertogo v odnol tochke. Chaplygin, S.A., Sobr. soch. (New Case of Rotation of a Heavy Rigid Body, Supported at One Point. Collected. works, Vol.1). M.-L., Gostekhizdat, 1948.
8. Kharlamov, P.V., O ravnomernykh vrashchenilakh tela, imeiushchego nepodvizhnuiu tochku (On uniform rotations of a body with a fixed point). PNM Vol.29, Ne 2, 1965.
9. Kharlamov, P.V., Odno reshenie zadachi o dvizhenil tela, imeiushohego nepodvizhnuiu tochicu (A solution for the motion of a body with a fixed point). PNW Vol.28, N $1,1964$.
10. Hess, W., Uber die Euler'schen Bewegungsgleichungen und über eine neue partikulăre Lösung des Problems der Bewegung eines starren schweren Korpers um einen festen Punkt. Math.Annaln., B.37, H.2, 1890.
11. Grioli, G., Esistenza e determinazione della precessioni regolari dimamicamente possibili per un solido pesante assimetrico. Annali Mat. pure appl., Vol.24, 19 3-4, 1947.
12. Kharlamova, E.I., $O b$ odnom chastnom reshenii uravnenii Ellera-Puassona (On a particular solution of the Euler-Poisson equations). PNV Vol.22, N 4, 1959.
13. Kharlamov, P.V., Lektsi1 po dinamike tverdogo tela, ch.l (Lectures on Rigid Body Dynamics, Part 1). Izd.Novosibirsk.Univ. 1965.
14. Zhukovski1, N.E., Loksodromicheskil maiatnik Gessa (Hess' Loxodromic Pendulum). Collected Works, Vol.1, M.-L., Gostekhizdat, 1950.

[^0]: *) Zhukovskil gave the integrals and geometrical interpretation of the motion of the body for the case when the center of gravity coincides with the fixed point, and the gyrostatic moment is arbitrary. When the latter becomes zero, Zhukovskil's solution reduces to Euler's solution. Quadratures in Zhukovski's solution were later referred to by Volterra [2].

